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AGENDA
1. Interconnect Parasitic Extraction Complexity in Historical 

Perspective.
2. The Simplest and Most Used Extraction: C(0) and RC(0) Signal 

Parasitic Extraction Under the Assumption of “All” Proximity 
Interconnect Geometry and Substrate Ideal Ground.

3. General Inductance Overview.
4. On-Chip Inductance Effects, which Nets Displays Inductive Effects 

more than others, and Needs to be Modeled Including Inductance.
5. RC, RCL and RCLK with and without Ideal Ground.
6. Inductive effects on Multi-Level Clock-Grids with Shields.
7. Inductive Effects on Cross-Talk for Complex Buses with Shields.
8. Simulation of On-Chip Decoupling for Buses for Different 

Packaging Schemes.
9. Over-all Methodology of Designing Interconnect Networks for High 

Performance IC’s with “Needed” Complexity.
10. Conclusions.
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C = Q / V

∇(ε∇V) = ρ

E = -∇V

D = εE

Q = ∫∫∫ρdν = ∫∫ D ⋅ ds
Ω Γ

Capacitance Calculation
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Comparison of Full 3D Versus 3D 
Cut & Paste Extraction

Cap (fF) Cut & Paste Method Full 3D Cut & Paste Full 3D Cut & Paste

Sect 1 Sect 2 Both Method Method Method Method

Window 1 µ 1 µ 1 µ 1 µ Error 2 µ Error

C11 full 0.847 0.443 1.290 1.624 21% 1.725 25%

C12 0.847 0.400 1.247 1.603 22% 1.705 27%

C11 gnd 0.001 0.043 0.044 0.021 109% 0.020 118%
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(A,0)

(B,1)

Γ1

Γ2

Γ3

(S1, V1)

(S2, V2) R = V / I
∇J = 0
J = σE
E= ∇V
∇ (σ∇ V) = 0
I = ∫ ∫ J ⋅ ds

s

R1 R2 R3

C1 C2 C3

S1 S2
A B

Resistance Calculation

-



7ISQED 2002

R1 R2 R3

C1 C2 C3

S1 S2
A B

from

∇(ε∇V) = ρ

Q1 = ∫∫D ⋅ ds,     Q2 = 
Γ1

(A,0)

(B,1)

Γ1

Γ2

Γ3

(S1, V1)

(S2, V2)

Calculating Capacitance of the
Resistance Regions

∫∫D ⋅ ds, 
Γ2

Q3 = ∫∫D ⋅ ds 
Γ3
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Drivers = 2
Loads = 275
Net Cap = 5.1 pF

Delay Distribution on the Net: TFUN_MRXC_BUFF

Net Statistics
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0.75 cm.

1.0 cm.

Driver

1

23

4

Generated spice deck
• 1,401 resistors
• 1,001 inductors
• 1,084 capacitors
• 16 gate capacitance  

loads

Level 1 Clock Net for a Major Microprocessor Chip
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Comparison of Wave Forms with & without 
Inductance

0.45 nS rise and fall times (0 - 3 Volt Transition) 
Four, 50fF Loads, 200 MHz Clock
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Comparison of Wave Forms with & without 
Inductance (Superimposed)

0.45 nS rise and fall times (0 - 3 Volt Transition) 
Four, 50fF Loads, 200 MHz Clock
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Delay and Skew Comparison

Delay and Skew Comparison for the Level 1 Clock Net for different 
model complexities and effects of under and over estimating the 

distributed capacitances.

00000C

33138162171162R(0.5*C)
139404500543499R(2*C)
67228276295275RC

67248270315278RL(0.5*C)
193539619732640RL(2*C)
119360410479422RLC

Skew(ps)Td4 (ps)Td3 (ps)Td2 (ps)Td1 (ps)
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Standard Inductors: 4 sided / 8 sided

Usually uses top metal layer for winding
Can use multiple metal layers in parallel

• Lowers series resistance
• Increases capacitance

Can use multiple metal layers in series (coil)
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Symmetric Center Tapped Inductors instead of 2 ‘uncoupled’ inductors:
• Easily defined center tap
• Reduced chip area
• Higher Q (reduced substrate losses)
• No need to model parasitic coupling

Symmetric Differential Inductors
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Inductance of a Rectangular Conductor
w

t

l

L(µH) = 0.002l {ln              + 0.5 - k} Where k = f (w,t )

R(Ω) =

Z( jω )= R + jω L      Where ω = 2π f 

(w t)
δl

(w + t)
2l

0 < k < 0.0025
l,t,w in cm
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DC Resistance vs. Length at 
Various Widths

(1 µm Thick Aluminum)

5 um

10 um

20 um

40 um

5 um

10 um

20 um

40 um

5 um

10 um

20 um

40 um

5 um

10 um

20 um

40 umInductance vs. Length at 
Various Widths
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f pass = R
2π L =

0.002w t [ ln ( ) + 0.5 - k ] 2π2l 
w+t 

δ

w = 0.5µ l = 3013µ R = 195.2Ω

w =   1µ l = 3109µ R = 100.7Ω

w = 10µ l = 3821µ R = 12.38Ω

δ = 3.24  10   Ω cm-6

t = 1 µ ,   L = 5 nH 
·

Inductive Behavior of 5nH Line as a 
Function of Width 
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Q = 0.002wt [ ln ( ) + 0.5 - k ] 2π f
2l

w + t
δ

Q  =                      =
Im[Z( jω )]
Re[Z( jω )] 

Lω
R

Q and fpass of a Rectangular Wire

f pass=
R

2π L =
0.002wt [ ln ( ) + 0.5 - k ] 2π2l

w + t

δ

[Reactance = Resistance] when Q = 1 => fpass
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Maximum Frequency at Which One Can
Ignore Inductive Effects in a Wire

5 um

10 um
20 um

40 um

(1 µm Thick Aluminum)
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Z

X

Y
L2

L3

L4L1

L5
L6

L

Partial Inductance Concept

Six Self Inductances: L1, L2, L3, L4, L5, L6

L1 is coupled to L2, L3, L4, L5, L6

L2 is coupled to L1, L3, L4, L5, L6

...

eff

Thirty Mutual Inductances: Leff
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Inductance Matrix  Representation

Self Inductance
Diagonals > 0

L11 L12 …………….. L16

L21 L22 .………….. L26

.

.

.

L61 L62 …………… L66

Off Diagonals 
Mutual Inductance
Can have < 0, > 0, or 0 value in Henry

L i, j = L j, i 

n n

Leff = Σ Σ L
i = 1 j = 1

i, j
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Z

X

Neumann Formulation of Mutual Inductance

YA

B

C

u→

D
ν→

x´, y´, z´

x, y, z

rs1

s2

S1́

S2́

L i, j = ∫∫
s´= s 1́ s = s1

S´2 s2
u  ν

r d    ds s´

r = √ ( x - x´ )  + ( y - y´ )  + ( z - z´ )2 2 2

→→

u        unit vector along AB→→

ν unit vector along CD→
→
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Geometric Distance Between Objects

X

gd 

l l 

r = √ (x - x´)  + ( y - y´)2 2

gd =             ln ( r )d Ω d Ω´
Ω
∫ ∫
´ Ω

y2´ x2

gd = ∫ ∫
y´= y1´

y2

∫
y = y1

x2´

∫
x´= x1´ x = x1

ln√ (x - x´)  + (y - y´)2 2 dx dx´ dy dy´ 

Y

A 
( x,y)

y

y
x x

B 
( x',y')

x' x'

y'

y'

r

Ω

Ω'
2

2

2

2
1

1

1
1

w2

gd 

S h2
h1

w1
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A Difficult Extraction Problem

Self capacitance, Capacitance to Substrate, High Frequency Skin Effect etc...

Device
Currents

Electrically
Induced
Currents

Magnetically
Induced
Currents

Device
Currents

Electrically
Induced
Currents

Magnetically
Induced
Currents
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Target 1

8

7

6

5

432

9

Inductive Coupling:  
Spirals and Helices  

Horizontal Spacing Constant 1 µm

Ve
rt

ic
al

 S
pa

ci
ng

 C
on

st
an

t 1
 µ

m

Target and Nine Conductors are all the Same Width

W
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9

5
6
7

8

1

2

3
4

Target 1

8

7

6

5

432

9

Mutual Inductive Coupling as a 
Function of Width  

K    =nm

L

L L.
nm

mmnn
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Skin Depth of Some Materials

Frequency (Hertz)

D
ep

th
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ro

ns
)



29ISQED 2002

Skin Depth of Commonly Used Metals
D

ep
th

 (m
ic

ro
ns

)

Frequency (Hertz)
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RF  current  flow in shaded region RF  current  flow in shaded region

Skin Depth Area of a Conductor
A1 = πr1

2

A2 = πr2
2

Skin Depth Area = A2 – A1 = π(r2 
2 – r1

2)

r2

r1 

h1h2 

A1 = w1 h1
A2 = w2 h2

Skin Depth Area = A2 – A1 = w2 h2 – w1 h1

w2 

w1

√δ = 2 
ωµσ 

δ = r2 - r1  

δ

δ

δ

2 δ = w2 - w1 = r2 - r1
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Vp = Propagation Velocity = Phase Velocity
Vp =  1/√µε =  1/√ LC

Vp = ƒλ

λ= (1/√µε ) / f

Radiative Losses

• On chip inductors make very poor antennas
No need to worry about radiation loss in most cases 
However, should be careful near quarter wavelength
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Wavelength vs. Frequency in SiO2

At 10 GHz
λ ≅ 8 mm

λ/4 ≅ 2 mm
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OEA’s Fabricated Test Chip 
TSMC 0.25 µm
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Winding on M2

Winding on M6

Q vs. Frequency for Two Inductors
(All metal layers have same thickness and ρ)
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AC Analysis Cross Section
Automatic Geometry Generation

M6 Clock in Red
VSS/VDD Shields in Blue and Gold
Proximity Metal on M4, M5, M7 and M8 in Green
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Vstart Vend

SHIELD

SHIELD

Freq

SH

S

S

SH

w

L

Variables:
Length: 1 to 15 mm Shield Width: 1 to 20 µm
Width: 1 to 15 µm Metal Layer for Clock: M4, M5, M6
Spacing: 0.8 to 3.0 µm RC & RCLK Models,  Capacitive Loads

Schematic of AC Analysis on 
Clock and Shields

Load

CLOCK SIGNAL
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Frequency Behavior of 3.2µ by 3.75 mm Line

500 MHz

500 MHz
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Transient Behavior of 3.2µ by 3.75 mm Line

45%
delay
error

Overshoot

Undershoot

30%
delay
error
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Bode Plot: 
Resistance & Capacitance Model

Red: long
Blue: medium
Green: short narrow

wide

+3 dB

-3 dB

narrow wide

narrow

wide

RC
MODEL
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Resistance, Capacitance, 
Inductance and Mutual Inductance Model

Red: long
Blue: medium
Green: short

narrow

wide

RLCK
MODEL
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Varying Shield Widths from 1µ to 20µ
(Constant Width and Length)

Shield width 5

Shield width 10

RC Models
All Shield Widths Shield width 20

Shield width 1
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Clock Grid Routing with 
Shield Grid as the Return Path

ClockVDD VDD VSSVSS
V
H
V

H

• Drivers on all four sides 
• Clock Grid on Multiple Metal Layers
• All same net crossings tied with vias
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RC skew 
17.86  ps

Clock Skew Comparison @ 2GHz

RCL skew 
48.14  ps

RCLK skew
29.02 ps
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Crosstalk From Aggressor to Victim Lines 
Through Non-Ideal Metal Shields

M4
M5

M7

M4

M5

M2

M6

M3

0.75 microns thick

0.30 microns thick

0.50 microns wide

0.50 microns wide
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M4 Aggressor Crosstalk at 
Various Points on M2 Victim Line

140 mV Max Crosstalk
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450 mV Max Crosstalk

M5 Aggressor Crosstalk at 
Various Points on M7 Victim Line
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Techniques for Reducing Crosstalk
• Increasing signal line width

– Increases signal-to-ground capacitance compared to signal-to-
signal capacitance

• Increase spacing between signals
– Decreases capacitive coupling
– Can increase inductive coupling (larger loops)

• Shielding signals with power and ground
– Provides known low-impedance return paths

• Buffer insertion
– Decrease line lengths, stagger buffers

• Differential signal lines
– Can be very effective for high-speed signals
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VDD
VSS

VDD
VSS

VDD and VSS couple to 
the signal and have significant
inductance and capacitance

Ideal versus Non-Ideal Power and Ground Nets

VDD

VSS
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Effect of VDD/VSS Impedance
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Effective Inductance to any Point on the VDD/VSS grids
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Simplified Simulation View of C4 Bumps Tied to a 
Power Plane

Probe Pnt

Caps on 
all four sides
to ground

All pins tied to gnd

Probe Pnt

Caps on 
all four sides
to ground

All pins tied to gnd
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Capacitor and Pin 
Currents versus Frequency

Capacitor currents:
Current starts to 
be drawn from the 
capacitors at 
around 100 MHz

Pin currents:
Most current drawn
from closest pin
until just before
200 MHz
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Capacitor and Pin Currents Crossing 
Around 200 MHz 

Pin Currents

Closest Cap

Other Caps
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••••

••••

••••

Driver
Buffer

Load
Buffer

Substrate
Tied to VSS_L

VDD_L VDD_R

VSS_L VSS_L

VSS

VDD

C_BYPASS_L
C_BYPASS_RR_VDD_PIN

L_VDD_PIN

R_VSS_PIN
L_VSS_PIN

C_LOAD

VDD_SHIELD

VSS_SHIELD

SIGNAL

••••

••••

••••

Driver
Buffer

Load
Buffer

Substrate
Tied to VSS_L

VDD_L VDD_R

VSS_L VSS_L

VSS

VDD

C_BYPASS_L
C_BYPASS_RR_VDD_PIN

L_VDD_PIN

R_VSS_PIN
L_VSS_PIN

C_LOAD

VDD_SHIELD

VSS_SHIELD

SIGNAL
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Length = 1000 µ
Width = 0.25 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  

Length = 1000 µ
Width = 0.5 µ
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Length = 1000 µ
Width = 1.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 1000 µ
Width = 2.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 2000 µ
Width = 0.25 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 2000 µ
Width = 0.5 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 2000 µ
Width = 1.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 2000 µ
Width = 2.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 4000 µ
Width = 0.25 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 4000 µ
Width = 0.5 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 4000 µ
Width = 1.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 4000 µ
Width = 2.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 8000 µ
Width = 0.25 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 8000 µ
Width = 0.5 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 8000 µ
Width = 1.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 8000 µ
Width = 2.0 µ

RC(0), RLC(0), RC, RCL, RCLK 
Transfer Characteristics  
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Length = 1000, 2000, 4000, 8000 µ
Width = 2.0 µ

RC Transfer Characteristics  
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Length = 1000, 2000, 4000, 8000 µ
Width = 2.0 µ

RC(0) Transfer Characteristics  
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Length = 1000, 2000, 4000, 8000 µ
Width = 2.0 µ

RCL Transfer Characteristics  
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Length = 1000, 2000, 4000, 8000 µ
Width = 2.0 µ

RLC(0) Transfer Characteristics  
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Length = 1000, 2000, 4000, 8000 µ
Width = 2.0 µ

RCLK Transfer Characteristics  
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No VDD/VSS Parasitics   

Length = 4000 µ
Width = 2.0 µ
Driver = 24X Inverter
Load = 1X Inverter with 50fF Load
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VDD/VSS Parasitics and No 
Decoupling Cap   

Length = 4000 µ
Width = 2.0 µ
Driver = 24X Inverter
Load = 1X Inverter with 50fF Load
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VDD/VSS Parasitics and 5nF 
Decoupling Cap   

Length = 4000 µ
Width = 2.0 µ
Driver = 24X Inverter
Load = 1X Inverter with 50fF Load
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Summary  
1. Choosing RC(0) , RLC(0) , RC, RLC or RLCK Circuit Model for an 

Arbitrary Interconnect for a Required Degree of Accuracy is not an 
Easy problem. Selection Depends on the Width, Length and 
Proximity Circuitry of the Net.  Generally “Long” and “Wide” 
Interconnects Require More Complicated RLCK Circuit Models.

2. For many cases such as, I/O rings, Clocks, Wide and Long Buses 
VDD/VSS Circuit or its Equivalent With the Package Models Have to 
be Included into the RLCK Circuit Model of the Signal Nets. 

3. On-Chip Inductance Effects, can be controlled with effective 
shielding. Deciding on a shielding Strategy Could be Determined 
with a Large Number of Simulations.

4. Including the On-Chip Decoupling Capacitors into the Simulations 
with the VDD/VSS Networks is a “Must” for Critical Nets. Too Risky 
to Ignore!!


