

RF-PASS™ RF Passive Component Analysis Tool

OEA International, Inc. 155 East Main Ave, Suite 110 Morgan Hill, CA 95037 www.oea.com

The Need for RF-PASS

- RFIC Passive Integration Continuously Increasing
 - A challenge for radio IC development
 - Smaller, more features, time-to-market demands

New RFIC Technologies

- Six or more metal layers means many more options available
- Enables new approaches to passive component design

• Libraries of Pre-Characterized Parts are Inadequate

- Large lag time for developing and characterization
- Exact component desired often not found in library
- No guarantee of any optimized components in library

RF-PASS Features

- Design Aids Generates Complex Inductors, Transformers, Baluns, Capacitors and Resistors
- Full 3D seamless field solution for the highest accuracy-yet runs in seconds
- Includes non-uniform current distribution due to skin and proximity effects
- Detailed model of substrate includes losses due to eddy currents and displacement current
- Generates S, Y, or Z-Parameters

- Generates fully coupled and distributed RCLK Spice sub-circuits
- Generates equivalent circuit model

Using the RF IC Passive Component Builder

- Design
 - Using a few parameters
- Extract
 - Complex frequency dependent RCLK
- Model
 - Create S, Y, Z
 Parameters and
 Compact Model
- Optimize
 - Through iteration

Additional RF-PASS Features

- Fast Run time (*typically seconds*)
- Input is GDSII layout for layout tools or simple ASCII control file for automated builders
- Automated builders generate cells for layout in GDSII format
 - Choices include Spirals, Helices, Transformers, Symmetrics, Baluns or Any Combination of Above Structures
 - Add to or Modify Layouts Before Modeling
 - Model various substrate shielding techniques
 - Model location, shape and size of ground contacts
 - Model pad parasitics (alternative for de-embedding)
 - Arrays of minimum sized vias
 - Snaps vertices to selected grid size
- OEA Optimizer included for max, min or best fit of user defined compact model
- Compatible with SpectreRF, HSPICE, SmartSPICE, ADS, etc. through industry standard output formats

RF-PASS Solver Technologies

Full 3D Field Solutions Industry's defacto Accuracy Standard

Inductance Modeling Approach Partial Equivalent Element Method (PEEM)

Neumann Formulation of Mutual Inductance

Geometric Distance Between Objects

Examples of Inductive Components

Symmetric Inductors

Differential and Single Ended Example LRQ – Mag(Z) Plots

Paired Inductors

Cross-coupling of inductors should be analyzed!

The Post-Layout Workshop, Version 3.6.7

GDSII:SPIRAL

Example Report File

Example of Touchstone 4-port S-Parameters

-				Termin	al				
<u>W</u> indow <u>E</u> dit	<u>O</u> ptions								<u>H</u> e
# Hz S RI R 50.0 1.00000e+08 0. 0.96790397 -0 -0.00000215 0) .03205852).01019387).00006806	0.00217649 0.03204346 -0.00000305	0.96790397 0.00213469 -0.00006800	-0.01019387 -0.00000305 0.03205947	-0.00000215 -0.00006800 0.00195742	0.00006806 -0.00000171 0.96789533	-0.00000551 0.00006806 -0.01041076	-0.00006796	
1.25893e+08 0. 0.96771380 -0 -0.00000341 0 -0.00000873 -0	.03222675 0.01283062 0.00008567 0.00008547	-0.00000171 0.00273742 0.03220288 -0.00000483 -0.00000272	0.00008808 0.96771380 0.00268494 -0.00008555 0.00008568	-0.01283062 -0.00000483 0.03222533 0.96770302	-0.00000341 -0.00008555 0.00246163 -0.01310364	0.03204710 0.00008567 -0.00000272 0.96770302 0.03220573	-0.00000873 0.00008568 -0.01310364 0.00241821	-0.00008547	
1.58489e+08 0. 0.96748569 -0 -0.00000540 0 -0.00001383 -0	.03242008 0.01614889 0.00010786 0.00010746	0.00344248 0.03238226 -0.00000765 -0.00000431	0.96748569 0.00337669 -0.00010762 0.00010787	-0.01614889 -0.00000765 0.03241490 0.96747155	-0.00000540 -0.00010762 0.00309530 -0.01649254	0.00010786 -0.00000431 0.96747155 0.03238384	-0.00001383 0.00010787 -0.01649254 0.00304095	-0.00010746	
1.995260+08 U. 0.96720034 -0 -0.00000856 C -0.00002191 -0 2.511890+08 0	.03265031 D.02032442 D.00013580 D.00013500 .03292687	0.00432832 0.03259038 -0.00001213 -0.00000682 0.00544090	0.96720034 0.00424606 -0.00013533 0.00013584 0.96683638	-0.02032442 -0.00001213 0.03263915 0.96718087 -0.02557816	-0.00000856 -0.00013533 0.00389134 -0.02075691 -0.00001358	-0.00013580 -0.00000682 0.96718087 0.03258994 0.00017104	-0.00002191 0.00013584 -0.02075691 0.00382346 -0.00003471	-0.00013500	
0.96683638 -0 -0.00001358 0 -0.00003471 -0 3.16228e+08 0.	0.02557816 0.00017104 0.00016944 .03326950	0.03283194 -0.00001921 -0.00001082 0.00683733	0.00533850 -0.00017009 0.00017110 0.96635524	-0.00001921 0.03290624 0.96680849 -0.03218736	-0.00017009 0.00489097 -0.02612236 -0.00002152	-0.00001082 0.96680849 0.03282829 0.00021551	0.00017110 -0.02612236 0.00480658 -0.00005498	-0.00021233	
0.96635524 -0 -0.00002152 0 -0.00005498 -0 3.98107e+08 0.	0.03218736 0.00021551 0.00021233 .03369552	0.03311915 -0.00003043 -0.00001714 0.00858899	0.00671075 -0.00021362 0.00021564 0.96570966	-0.00003043 0.03323383 0.96631403 -0.04050028	-0.00021362 0.00614545 -0.03287195 -0.00003410	-0.00001714 0.96631403 0.03311038 0.00027174	0.00021564 -0.03287195 0.00604127 -0.00008705	-0.00026540	
0.96570966 -0 -0.00003410 0 -0.00008705 -0 5.01187e+08 0.	0.04050028 0.00027174 0.00026540 .03424893	0.03345746 -0.00004820 -0.00002715 0.01078342	0.00843434 -0.00026798 0.00027201 0.96480819	-0.00004820 0.03363601 0.96564738 -0.05095233	-0.00026798 0.00771894 -0.04136107 -0.00005404	-0.00002715 0.96564738 0.03344054 0.00034305	0.00027201 -0.04136107 0.00759174 -0.00013777	-0.00033041	
0.96480819 -0 -0.00005404 0 -0.00013777 -0 6.30957e+08 0.	D.05095233 D.00034305 D.00033041 .03498438	0.03387216 -0.00007632 -0.00004299 0.01352811	0.01059809 -0.00033554 0.00034359 0.96352098	-0.00007632 0.03415168 0.96471261 -0.06408776	-0.00033554 0.00969010 -0.05203390 -0.00008561	-0.00004299 0.96471261 0.03384232 0.00043390	0.00034359 -0.05203390 0.00953771 -0.00021789	-0.00040870	
0.96352098 -0 -0.00008561 0 -0.00021789 -0 7 94328e+08 0	0.06408776 0.00043390 0.00040870 03598597	0.03438851 -0.00012077 -0.00006799 0.01695288	0.01331349 -0.00041893 0.00043497 0.96164470	-0.00012077 0.03482743 0.96337279 -0.08058370	-0.00041893 0.01215587 -0.06544518 -0.00013554	-0.00006799 0.96337279 0.03433813 0.00055047	0.00043497 -0.06544518 0.01197918 -0.00034420	-0.00050025	
0.96164470 -0 -0.00013554 0 -0.00034420 -0	0.08058370 0.00055047 0.00050025	0.03504456 -0.00019096 -0.00010739	0.01671994 -0.00052061 0.00055258	-0.00019096 0.03573470 0.96141357	-0.00052061 0.01523384 -0.08228427	-0.00010739 0.96141357 0.03496159	0.00055258 -0.08228427 0.01504117	0.00030023	

4-port S-parameters in Touchstone format

Input impedance over frequency of both inductors plotted on a Smith Chart

Helical Inductors

Example of LRQ Plots – Smith Chart Output

Transformers and Baluns

Example of Report File Showing Insertion Loss

Transformer from Two Concentric Helices

Transformer with Helix on Spiral

Single Helix

Double Helix

Coupled Resonant Circuits

Example of Report File and Smith Chart

Effective DC Inductance And Series DC resistance Given for both Devices Verifying the symmetry by Overlaying the input impedance Of the two inductors

Lets talk Capacitive Components

Capacitive Components

MIM Capacitors (Not as Simple as they Look)

- Large Devices with Distributed Resistance and Capacitance
- Could Include Significant Substrate Effects
- Asymmetry Could Cause Noise Pickup from Substrate

Capacitive Components

Multi-layer Interdigitated Structures

- Patented structure (owned by LoneStar Inventions)
- Maximize Capacitance per unit area (4X standard parallel plate)
- Symmetric relative to substrate (minimize noise pickup from substrate)
- RF-PASS Modeling will include skin and proximity effects

RF-PASS can help optimize this type of design

- Control undesired RL effects
- Helps easily customize to fits in oddly shaped regions
- Optimize selection and usage of metals
- Optimize finger width and spacing
- Optimize placement of metal straps
- Optimize Q

Example of Interdigitated Capacitor*

				The Post-L	<u>ayout Wo</u>	rkshop				· · -
File	View	Display	CELL-AN	NET-AN	P-GRID	RF-PASS	METAL	Tools	Setup	Help
1										
2										
<u> </u>										
Q	l _									
/	$ \langle c$									
			///////////////////////////////////////							
=			20000000					888877777		
									Z ////	
T										

3-D Image

* Patent: LoneStar Inventions

Example Capacitor Report File and Plots

Inter-digitated caps provide more capacitance per volume by taking advantage of fringing effects.

	Terminal	
	Window Edit Options	<u>H</u> el
	2 // total nets 1 A 2 B RF-PASS Capacitance Report	
	Net to SUBSTRATE Capacitance: NET A -> SUBSTRATE 7.4359e-15 NET B -> SUBSTRATE 6.4629e-15	
	Net to Net Coupling Capacitance: NET A -> NET A 4.5348e-15 NET A -> NET B 4.4931e-14 NET B -> NET B 2.8781e-15	
	Net Layer Capacitance: NET A total cap 5.6962e-14 Layer5 1.4878e-14 25.77% Layer5 1.4322e-14 25.14% Layer45 1.3879e-14 24.37% Layer50 1.4083e-14 24.72% NET B total cap 5.4272e-14 Layer5 1.3769e-14 25.37% Layer45 1.3058e-14 25.53% Layer45 1.3589e-14 24.06% Layer50 1.3589e-14 25.04%	
	WARNING : _IN / _OUT node pair not defined for A WARNING : _IN / _OUT node pair not defined for B	
	2 Ports found. Results are in Yout, Zout and Sout files Port 1 = A Port 2 = B	
1		

Lets Talk Resistive Components

Resistive Components

Thin Film Resistors (Not as Simple as they Look)

- Large Devices with Distributed Resistance and Capacitance
- Could Include Significant Substrate Effects
- Asymmetry Could Cause Noise Pickup from Substrate

Thin Film Serpentine Resistor

- What is the coupling across segments?
- What is the coupling through the substrate?

Serpentine Resistor

Example Resistor Report File

Summary

Full 3D Field Solver with Frequency Effects with Fast Run Times

- S, Y, Z-Parameter and Compact Model Output
- GDSII Input or Automatic Creation of Structures.
- Useful for all RF Passive structures