

RING Designer™

VLSI Power Distribution Ring Design Tool

OEA International, Inc. 155 East Main Ave, Suite 110 Morgan Hill, CA 95037

www.oea.com

RING Designer Features

- Solves the problem of generating accurate Spice decks to analyze IO rings with packaging effects
- Helps with the optimization of power pin placement on complex IO ring designs
- Analyzes potential ground bounce and simultaneous switching noise problems
- Analyzes and assists in balancing current loads to I/O pad and voltage input pads
- Includes all ring and packaging inductance parasitics

Fast and Easy What-if Analysis for Optimization of IO Placement

RING Designer

NET-AN Extraction & Spice

Why is it important to include inductance in IO analysis?

- Impedance to the power sources can cause ground bounce in the voltages tied to the IO pins
- Impedance in the rings between the IOs cause noise in the voltages supplied between switching IO pins.

OEAComparison of Noise andInternational, Inc.Signal Integrity With and Without Ring Parasitics

Comparison of Skew With and Without Ring Parasitics

International, Inc.

International Inc.

A Practical Approach to Analyzing the IO Ring

- Build and Simulate a Spice model of the IO ring including:
 - Accurate but Simplified Ring Parasitics
 - Significant Package Parasitics and Terminations
 - Full Spice IO Buffer Models
 - Lots of Measure Statements for all Outputs and Power and Ground Voltages and Currents
- Simulate in Spice and Analyze Results
- Modify and Iterate until all the problems are solved

Lots of Measure Statements are Needed to Monitor all IO Buffer Voltages & Currents

OEA International, Inc. Analysis Flow using RING Designer

IO Ring Geometry Generated and Parasitics Extracted

GDSII:TOP_CELL

Structure is Simplified for Accurate but Faster Spice Simulation

									2
					Th	e Post–	Layout	Worksho	1
File \	View	Display	CELL-AN	NET-AN	P-GRID	Tools	Setup		
									Set di

OEA Ring Designer generated data

Package Parasitics Can be Extracted, Obtained International, Inc. **Package Parasitics Can be Extracted, Obtained**

Package Plane Models are Important for Simulation of Return Path Currents

OEA International, Inc. Analysis Flow using RING Designer

Package Pins

A Real Design Example Pre-routing pin placements with estimate package parasitics

R_129

R (n)

R 1

Grouping Simultaneous Switching Buffers Optimizes Simulation Time

Group A Spice Simulation Output

Group A Spice Simulation Output

Examining Group A Currents to Power and IO Pins

Fixing the Group A Bus Problem

There are a number of ways to solve any IO ring problem

- 1. Lower L on power pins
- 2. Adding or moving power pins
- Moving buses or spreading out simultaneously switching pins
- 4. Adding decoupling caps

Browse and select the cells

GDSII:TOP_CELL

Group A Spice Re-Simulation After Adding Power Pins

International. Inc.

Group A Power Pins Before and After the Fix

Groups B, C, & D Spice Simulations Showed No Similar Problems

International. Inc.

Other Analysis Examples Using Ring Designer

Once the initial input file is setup, iterations or variations only take a few minutes of time

- Testing Different Possible Loading Conditions and Signal Integrity Under Different Switching Conditions
- Testing How Process Corners and Temperatures
 Relate to I/O Buffer Delay
- Examining Alternative Package Performance to Save Costs
- Examining Noise on Quiet Lines

Examining Different Possible Loading Conditions and Integrity of Signals Under Different Switching Conditions

Examining Different Possible Loading Conditions and Integrity of Signals Under Different Switching Conditions

The Extremes of Process Corners and Temperatures Versus I/O Buffer Delay

Examining Signal Integrity of Active and Quiet I/O Buffer Output Pins

Looking for I/O Buffer Output Pin Noise Errors

International, Inc.

Examining Package Inductance Effects on Quiet Lines

[Left] Move Object, [Ctrl][Left] Highlight Signal

International. Inc.

Step 2 Run RING Designer

What are the Benefits to Using This Solution?

High Speed IO Ring and Package Analysis Review

- IO pre-planning using Spice is the best way to avoid problems.
 - Create the full circuit
 - Simulate or estimate package and include PCB parasitics & loading
 - Use simplified IO ring parasitics
 - Use real IO buffer spice models
- Model in Spice to find problems
 - Simultaneous switching noise
 - Ground bounce
 - Excessive group switching delays
 - Corner modeling
 - ..
- Modify pin placement to remove problems and re-run
 - Add VDD/VSS pins
 - Add decoupling caps
 - Switching pin locations